理想流体属无能量损耗的流体,即热导与黏性所致的能量损耗可忽略不计。声波之压缩膨胀,必致流体局部温度之升降,遂形成空间温度场,而相邻空间区域之温差必致热导。惟声波的压缩膨胀交变过程如此快速,以致邻近区域因温差所致的热导几可忽略。所以,理想流体中声波的压缩膨胀过程可视为绝热,流体质点的熵是时间常数。黏性源自流体的内摩擦,导致宏观有序的声波机械运动转化为微观无序的分子热运动。但对多数常见流体,非极高频率之声波,其粘性一般较弱,在有限的时空范围内也可忽略。
《流体力学引论》一文详述了理想流体运动所遵循的基本方程,本文仅概述其结果如下。设理想流体的密度ρ(x,t),压力P(x,t),单位体积有质量源流ρq(x,t)产生,且单位体积受外力f(x,t)的作用,其中q(x,t)是流体的体积产生率,x在欧拉描述下是流体三维空间矢量,而在拉格朗日描述下则是流体质点的三维位置矢量。所谓质点,可视为一个流体微团。它体积足够小,使得相关的物理量在其上几乎不变,故可被视之为空间的点。它又足够大,足以包含大量的流体分子,从而具有统计物理意义下的状态物理量如密度ρ、压力P、温度T等。首先,从质量守恒定律可导出质量的连续性方程,
评论